ICES CM 2016/H:207

Biogenic carbonate records environmental variation in sulfur isotopes

Zoë Doubleday, John Cliff, Chris Izzo, Bronwyn Gillanders

There has been growing interest in the use of sulphur isotopes (δ 34S) as biogeochemical markers to untangle food web dynamics, track animal movements, and determine dietary provenance across marine and freshwater systems. The hard, carbonate-based tissues of aquatic organisms are particularly useful for isotopic analyses as they retain a permanent and temporally-resolved chemical record over the life time of the organism. We sought to experimentally determine whether biogenic carbonate is a useful tool to track variation in δ 34S, and whether such variation is influenced by the isotopic composition of the ambient water and/or diet. In an orthogonal design, we raised juvenile fish, for a month, in two water treatments with differing δ 34S signatures, as well as three diet treatments with differing signatures. We subsequently analysed the calcium carbonate ear bones (otoliths) of the fish using secondary ion mass spectrometry, a technique that allowed the 'experimental portion' of the otolith to be targeted. We found that the ear bones recorded environmental variation in δ 34S, which were influenced by both ambient water and diet. This study provides experimental evidence that biogenic carbonates record variation in δ 34S and questions the assumption that diet is the sole source of δ 34S variation in aquatic consumers.

Keywords: biogeochemical marker, sulfur isotopes, carbonate, diet, otolith

Contact author: Zoë Doubleday, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia, <u>zoe.doubleday@adelaide.edu.au</u>